
University California, Berkeley
Master of Molecular Science and Software Engineering

CHEM 274A, 3 Units
Programming Languages for Molecular Sciences: Python and C++

Fall 2023

Jessica A. Nash and Benjamin P. Pritchard
janash@berkeley.edu ; bpp4@berkeley.edu

Course description:
This course provides in-depth coverage of programming concepts and techniques required for
scientific computing, data science, and high-performance computing using C++ and Python. The
course will compare and contrast the functionalities of the two languages. Topics include classes,
overloading, data abstraction, information hiding, encapsulation, file processing, exceptions, and
low-level language features. Numerous exercises based on molecular science problems will
provide the hands-on experience needed to learn these languages. This course serves as a
prerequisite to later MSSE courses: Data Science, Machine Learning Algorithms, Software
Engineering for Scientific Computing, Numerical Algorithms Applied to Computational
Quantum Chemistry, and Applications of Parallel Computers.
Contribution of this course to the broader curricular objectives: Required course for all
MSSE students.
Course format: Three hours weekly of Faculty-led, asynchronous, web-based instruction; two
hours weekly of web-based synchronous discussion; and two hours of web-based, synchronous
lab every other week to complete the course in 15 weeks. GSIs will go over homework
assignments and practice exercises that are quantitative, prepare students for their homework
assignments and post answer guides to homework assignments after they are submitted. Outside
class work should comprise about four hours a week for a total of nine to eleven hours per week.
Prerequisites: Prior exposure to basic programming methodology, use of git software
and GitHub website or the consent of the instructor.

Reading List and Resources:

All books are free or available through UC Berkeley’s library. Readings are primarily provided as
supplemental options for the student. They are not required, but are strongly recommended to get
the most out of the course.

● The Linux Command Line (5th edition), William Shotts. Can be downloaded for
free (http://linuxcommand.org/tlcl.php)

● The C++ Programming Language (4th Edition), Bjarne Stroustrup, Addison-Wesley.
ISBN 978- 0321563842. May 2013. Available as e-book through UC Berkeley
Libraries.

○ More C++ info: http://www.stroustrup.com/bs_faq.html

mailto:janash@berkeley.edu
mailto:bpp4@berkeley.edu
http://linuxcommand.org/tlcl.php

● Think Python: How to Think Like a Computer Scientist 2nd Edition, Alex Downey,

O’Reilly. Available free online and as an e-book through UC Berkeley Libraries.
● Learning Python, 5th edition, Mark Lutz, O’Reily. Available as an e-book through

UC Berkeley Libraries.
○ This book was published in 2013, but is still an excellent resource for learning

intermediate to advanced Python. The author keeps a website
(https://learning-python.com/python-changes-2014-plus.html) where he tracks
updates and language changes.

Grading: There will be 2 programming projects, 5 problem sets, and asynchronous
“lecture” exercises. Lecture exercises are interspersed between asynchronous video lecture
material. An online coding platform with an auto-grader will be used for the lecture
exercises. Submissions will be reviewed by GSIs if necessary. Programming assignments
and weekly assignments will be graded by GSIs or faculty.

● 40% problem sets
● 20% programming assignments
● 20% lecture exercises
● 20% discussion and lab.

Assignment Types:
● Problem Sets are due biweekly and will cover material from the previous two weeks

of the course.
● Programming Projects are larger assignments integrating concepts from multiple

weeks. Both projects will be due at the end of the course.
● Lecture Exercises are integrated with the lecture material and are expected to be

completed as you move through the course material. These will be short, single
concept, programming problems which test concepts covered in lecture. These
problems are autograded and must be finished by the end of the week.

● Discussion and Lab are sessions where you put concepts you learn in class into
action with your classmates. Attendance is required, and each discussion and lab will
have an assignment that is to be completed during the session and turned in at the end
of the session. Some assignments will be completed collaboratively with a team.

Missed Synchronous Sessions: Missing synchronous sessions (discussion and lab) will
result in no credit being awarded for the missed session unless the absence is pre-arranged
with the instructor. Accommodations may also be made for emergencies.

Late work: Late work will not be accepted for the weekly lecture exercises. For biweekly
problem sets and programming assignments, late work will be accepted for a penalty of 10% per
day until a week after the assignment due date. Problem sets and programming assignments
turned in more than a week late will not be accepted without pre-approval from the instructor.

https://learning-python.com/python-changes-2014-plus.html

Accommodations for Disabilities UC Berkeley is committed to creating a learning environment
that meets the needs of its diverse student body including students with disabilities. If you have a
disability, or think you may have a disability, you can work with the Disabled Students' Program
(DSP) to request an official accommodation. https://dsp.berkeley.edu/. If you already have an
accommodation letter from DSP, please check to make sure that the letter is submitted through
the DSP system (there is no need to email a separate copy). If you would like to set up an
individual meeting to discuss your accommodations, please contact the instructors.

Collaboration Policy: Unless otherwise instructed, all assignments are to be completed
independently and materials submitted as homework should be the result of one’s own
independent work.

Course requirements: Each student is required to view all of the online lectures, do all the
online quizzes, submit all homework assignments, and attend discussion and lab sessions. A
laptop, workstation, or access to a UNIX-style account is required, as is installation of an Emacs
or VI editor.
Office hours: The instructors will be available 2 hours per week for one on one consultation
during office hours. The GSIs will be available 4 hours a week. These synchronous office hours
will be posted on the course website. The instructors will also be available for synchronous open
class discussion two hours per week. These will be archived and available to students.
Learning objectives for this course: Upon successfully completing this course, students will be
able to

● Understand the Python Standard Library and the C++ Standard Library.
● Interact with a computer using a text interface (the shell) and use text-based text editors.
● Write bash scripts to automate running programs.
● Use remote computing resources.
● Write object-oriented Python and C++ programs which utilize language features.
● Develop the necessary skills to effectively interact with machine learning environments.
● Acquire the skills needed to develop high-performance computing software.

Course Schedule:

This course schedule outlines lecture topics, suggested readings and assignments due. Note that
there is a Discussion session every week and a lab session every other week.

Week # Concepts Readings Assignments Due

1 Course introduction and expectations.
Organizing projects, introduction to
code/project documentation. Python
code formatters and linters (black,
flake8). Python coding style (PEP8),
type hinting.

Lecture
Exercises

https://dsp.berkeley.edu/

2 Programming paradigms - procedural,
object-oriented, and functional
programming. Python class definitions.
Encapsulation and inheritance.
Introduction to the Linux command
line: environment variables, shells,
command line file navigation.

● Chapters 15-18
in Think
Python

● Chapters 2, 4
and 11 in The
Linux
Command
Line

Lecture
Exercises
Synchronous
Discussion
Synchronous
Lab

3 C++ class definitions, getters, setters,
public and private members,
constructors and destructors, and
inheritance. Introduction to command
line text editors (vi/vim)

● Chapter 16,
17,20 in The
C++
Programming
Language

● Chapter 12 in
The Linux
Command
Line

Lecture
Exercises
Synchronous
Discussion
Problem Set 1

4 Python standard library - Objects and
data types. Mutable and immutable
objects . Strings, lists, tuples, sets,
dictionaries. Command line - common
utilities (grep, sed, find)

● Chapter 7, 8,
10, 11, 12 in
Think Python

● Chapter 17 in
The Linux
Command
Line

Lecture
Exercises
Synchronous
Discussion
Synchronous
Lab

5 Python variable scope. Object
introspection. List and dictionary
comprehensions, and generators. Bash
scripting

● Chapter 17, 20
in Learning
Python

● Chapter 24 in
The Linux
Command
Line

Lecture
Exercises
Synchronous
Discussion
Problem Set 2

6 C++ templates and generic
programming. C++ operator
overloading. Command line: file
permissions

● Chapter 18,
23, 24 in The
C++
Programming
Language

● Chapter 9 The
Linux
Command
Line

Lecture
Exercises
Synchronous
Discussion
Synchronous
Lab

7 Resource management. C++ scope,
RAII, and smart pointers

● Chapter 6, 13,
34 in The C++
Programming
Language

Lecture
Exercises
Synchronous
Discussion
Problem Set 3

8 C++ standard library: iterators and
common containers (vector, array, map,
unordered_map, set, string, list)

● Chapter 30,
31, 33 in The
C++
Programming
Language

Lecture
Exercises
Synchronous
Discussion
Synchronous
Lab

9 C++ standard library algorithms: fill,
copy, find, sort. Streams, I/O, and file
I/O

● Chapter 32 in
The C++
Programming
Language

Lecture
Exercises
Synchronous
Discussion
Problem Set 4

10 Python context managers, decorators
and exceptions. Dunder methods and
operator overloading in Python

● Chapter 30,
34, 35, 39 in
Learning
Python

Lecture
Exercises
Synchronous
Discussion
Synchronous
Lab

11 Debugging and debuggers. Basic
profiling and C++ memory sanitizers.
Features of Integrated Development
Environments (IDEs).

Lecture
Exercises
Synchronous
Discussion
Problem Set 5

12 Python scripts and C++ programs with
command line arguments: argv and
argparse. Python packages, Python
package managers and environments.

● Chapters 22-24
in Learning
Python.

Lecture
Exercises
Synchronous
Discussion
Synchronous
Lab

13 Python scientific applications and
common packages

Lecture
Exercises
Synchronous
Discussion

14 Introduction to remote computing
resources - developing on VMs and
cloud computing

● Chapter 16 in
The Linux
Command
Line

Lecture
Exercises
Synchronous
Discussion
Synchronous
Lab

15 C++ Scientific applications and
common packages

Lecture
Exercises
Synchronous
Discussion
Programming
Project 1 and 2
Due

