
University California, Berkeley

Master of Molecular Science and Software Engineering

Software Engineering Fundamentals for Molecular Sciences

CHEM 274B, 3 Units

Course description:

This course will advance students’ understanding of fundamental knowledge and

techniques for developing complex software. Students will gain an in-depth view of

computer system architecture as well as abstraction techniques as means to manage

program complexity and software productivity. Students will collaboratively develop a

software engineering package, thus gaining experience in all aspects of the software

development process. This course serves as a prerequisite to later MSSE courses: Data

Science, Machine Learning Algorithms, Software Engineering for Scientific Computing,

Numerical Algorithms Applied to Computational Quantum Chemistry, Applications of

Parallel Computers, and the Capstone Project.

Contribution of this course to the broader curricular objectives: Required course for all

MSSE students.

Course format: This course is designed as 13 weeks of: three hours weekly of Faculty-led,

asynchronous, web-based instruction; two hours weekly of web-based synchronous

discussion; and two hours of web-based, synchronous lab every other week. GSIs will go

over homework assignments and practice exercises that are quantitative, prepare

students for their homework assignments and post answer guides to homework

assignments after they are submitted. Outside class work should comprise about four

hours a week for a total of nine to eleven hours per week. Throughout the course, we will

develop a series of assignments related to the development of a web-based platform

where users can:

● Input molecular structures in different formats.

● Visualize the molecules in 2D and 3D.

● Calculate basic molecular properties.

● Predict more complex properties integrating pre-existing ML models.

● Store and retrieve molecular data.

● Access all functionality programmatically via an API.

● Monitor and receive user feedback for continued optimizations and

integrations.

Project assignments, final projects, lecture exercises, and labs will enable development of

the final product and highlight how each component can be extended to other applications

in molecular sciences, with references to real products that use them.

Prerequisites: Prior exposure to basic programming methodology at the level taught

through MSSE’s Introduction to Programming Languages Bootcamp. Python and C++

programming language concepts covered in MSSE’s “Programming Languages for

Molecular Sciences: Python and C++,” though not before they are covered in the

referenced course.

Reading List and Resources:

Required and recommended readings will be posted weekly on the course website.

Required readings (books, articles, etc.) will be free to access or available through UC

Berkeley’s library. Weekly readings will be designated as required or recommended, but

reading all of them will provide the most benefit.

Learning objectives for this course: Upon successfully completing this course, students

will be able to

● Build foundational knowledge of software engineering principles, data

structures, algorithms, and optimization techniques.

● Develop skills to identify and integrate new technologies into a pre-existing

codebase.

● Learn best software development practices in traditional and machine learning

oriented projects at a collaborative level and with the end user in mind.

● Add practical projects to their MSSE software portfolio.

Grading: There will be 3 individual programming projects, asynchronous “lecture”

exercises, and a group final project, in addition to participation in synchronous labs and

discussion.

● Individual programming projects will reflect the student’s individual software

development work in the class and build up on the case studies introduced

through asynchronous lectures. Each programming project will be due 4 weeks

after being assigned. The third individual programming project will be due at

the same time as the group final project.

● Lecture exercises are interspersed between asynchronous video lecture

material and are meant to simulate walking through solving a software

development project as a collaborative pair of developers. Problems in the

lecture exercise will be related to the development of a single, overarching

software package that we will develop during the span of the course.

● Discussions and labs will extend covered concepts through short, practical

scenarios. Attendance is required and discussion and lab assignments are

scoped to be completed during the session.

● The final project ties together all material covered in the course and tasks

students with replicating a software development product end-to-end, similar

in scope to the overarching course project, with minimal aid from the instructor.

An online coding platform with an auto-grader will be used for the lecture exercises.

Submissions will be reviewed by GSIs if necessary. Individual and final programming

projects will be graded by GSIs or faculty.

The final grade breakdown is as follows:

● 36% programming projects (each project worth 12%),

● 25% final project,

● 15% lecture exercises,

● 15% programming labs,

● 9% synchronous session discussion and participation

Missed Synchronous Sessions: Missing synchronous sessions (discussion and lab) will

result in no credit being awarded for the missed session unless the absence is

pre-arranged with the instructor.

Late work: Late work will not be accepted for lecture exercises. For programming

projects, late work will be accepted for a penalty of 10% per day until a week after the

assignment due date. Programming projects turned in more than a week late will not be

accepted without pre-approval from the instructor.

Accommodations for Disabilities UC Berkeley is committed to creating a learning

environment that meets the needs of its diverse student body including students with

disabilities. If you have a disability, or think you may have a disability, you can work with

the Disabled Students' Program (DSP) to request an official accommodation.

https://dsp.berkeley.edu/. If you already have an accommodation letter from DSP, please

https://dsp.berkeley.edu/

check to make sure that the letter is submitted through the DSP system (there is no need

to email a separate copy). If you would like to set up an individual meeting to discuss your

accommodations, please contact the instructors.

Collaboration Policy: Unless otherwise instructed, all assignments are to be completed

independently and materials submitted as homework should be the result of one’s own

independent work.

Course requirements: Each student is required to view all of the online lectures, do all the

online quizzes, submit all homework assignments, and attend discussion and lab sessions.

A laptop, workstation, or access to a UNIX-style account is required, as is installation of an

Emacs or VI editor.

Office hours: The instructors will be available 2 hours per week for one-on-one

consultation during office hours. The GSIs will be available 4 hours a week. The course

schedule and office hours will be posted on the course website. The instructors will also be

available for synchronous open class discussion two hours per week.

Disclaimer: This syllabus is subject to change at any time by the instructor. Every effort

will be made to give students ample notification of any changes.

Course Schedule:

● Module 1: Weeks 1, 2, 3, 4, 5

● Module 2: Weeks 6, 7, 8, 9, 10

● Module 3: Weeks 11, 12, 13

Week # Concepts Product Status

1 Course introduction, expectations, and outline

of course-long product. We will cover business

requirement documentation and how to

translate it to system design documentation, life

cycle models, project planning and estimation,

and diagramming (UML, user journey). By the

end, we will have a mental map for the

components that we will cover throughout the

course and which components are out-of-scope

for future learning. We will also have covered

concepts to prepare for team-oriented software

development (productivity, onboarding, code

review, code readability, documentation,

licensing, versioning)

Defined documentation

on customer

requirements, system

design, and operational

structure

2 Data structures for molecular representation.

Strings, arrays, hash tables, stacks & queues,

bloom filters.

Supports several

molecular

representation formats,

conversion between

multiple input/output

formats, basic property

calculations and similar

molecule look ups

3 Algorithms for molecular analysis, such as

substructure searching, molecular fingerprint,

similarity calculations, SMILES/SMARTS

processing, sorting applications, and compound

library design. Analysis of algorithm complexity

and performance. Advanced extensions of

previously covered data structures to highlight

object-oriented design pitfalls, antipatterns, and

value of design patterns. Introduction to graph

data structures for molecular representations

and algorithms.

4

5

6 RESTful API design, microservices architecture,

relational vs NoSQL databases for molecular

data, efficient querying of chemical databases

Web-accessible via UI

along with API

integrations

7 Principles of scientific data visualization,

libraries for 2D and 3D molecular visualization,

explanatory vs exploratory visualizations, how to

lie (and detect liars) with visualizations

View molecule

structure and plots of

properties of uploaded

molecules

8 Advanced graph algorithms (e.g., searching and

traversing algorithms), greedy algorithms,

optimization algorithms.

Improved performance

of features and feature

extensions

9 Basic parallel programming concepts in Python

(Numba, Cython) and C++ (CUDA), processing

large files and considerations to latency and

scalability.

10 Test driven development, unit testing

framework, continuous integration,

user-acceptance testing, integration testing,

code debugging strategies.

Test set coverage of

existing features

11 Basic machine learning concepts for molecular

property prediction, integrating an opaque

machine learning model, differences in

traditional software project lifecycle compared

to machine learning project lifecycle.

Integration of more

advanced property

prediction capabilities

12 Offline evaluation, online evaluation,

experimentation principles and design, A/B

testing, multi-armed bandits, statistical testing

applied to software development.

Harness for continuous

evaluation of property

predictors & for

evaluating new features

or candidate models in

production settings

13 Static deployment, dynamic deployment (device,

server), deployment strategies, versioning,

caching, model serving, model monitoring, model

maintenance. Retrospective on course-long

project and next steps. Discussion on future

trends in software engineering and molecular

sciences.

Set up tracking and

protection against

potential issues to the

platform’s reliability

and scalability. Project

retrospective to

identify future

directions.

